Karim Samaha

Switzerland, Lausanne Ecublens 1024

(+41) 076 271 28 35

★ karimsamaha98@gmail.com

© live:karimsamaha98

A karimsamaha98.github.io

in linkedin.com/in/karim-samaha

OBJECTIVE

A self-motivated electronics hobbyist, looking to leverage extensive fast-prototyping skills, both in hardware and software, in the development of innovative robotics and automation solutions.

EDUCATION

Swiss Federal Insitute of Technology(EPFL), September 2020-Present Switzerland

 $Master's \ in \ Robotics, \ Microengineering GPA 5.5/6$

American University of Beirut

Lebanon Bachelor of Engineering, Mechanical Engineering GPA 4/4

Collège Notre Dame de Nazareth

Lebanon
French Baccalauréat TS
17.47/20

Certified Tutor

PROFESSIONA EXPERIENCE

PROFESSIONAL Synkers, Local Tutoring Company, Lebanon

ebanon

June 2018-Present

 \bullet Tutoring university courses related to engineering and sciences both in groups and in private.

American University of Beirut, Lebanon September 2018-June 2020 Undergraduate Research Assistant with Prof. Daniel Asmar at the Mechanical Engineering Department

- \bullet Worked closely with different mobile robots such as the Pioneer 3AT and the KUKA Youbot.
- Participated in a research project related to computer vision and machine learning.

University of Waterloo, Canada

May-August 2019

Research Intern with Prof. John Zelek at the Systems Design Department

- Implemented a deep neural network for camera calibration from video sequences.
- Developed a new image generation algorithm using Unity as a game engine.

ACADEMIC PROJECTS

ABB IRB 120 Robot

February 2021-June 2021

Robotics Practical

- \bullet Implemented a version of the Tic-Tac-Toe game on an ABB robot using the RAPID programming language
- \bullet The robot is capable of marking crosses or circles accurately on a sheet of paper thanks to a pen mounted on its end-effector

Autonomous Navigation System for a Drone February 2021-June 2021 Aerial Robots

- \bullet Implemented an autonomous navigation algorithm on the Crazyflie drone using Python
- The navigation system relies on a velocity controller which uses optical flow for stability and range sensors in a potential field framework for obstacle avoidance

Miniature Smart Home System

February 2019-June 2019

Instrumentation

- Designed a smart home system using myDAQ and Labview
- The DAQ interfaced directly with various sensors and actuators in a closed loop fashion

TECHNICAL SKILLS

Modeling and Manufacturing

- Modeling mechanical components using AutoCAD, Creo or Solidworks.
- Performing stress and motion analysis on Solidworks.

Identification, Simulation and Control

- Performing system identification in both frequency and time domain.
- Implementing various control strategies (PID,LQR and MPC) on simulation and on physical devices.

Electronics

- Programming microprocessors or microcontrollers (Raspberry Pi, Arduino, PIC, MSP432).
- \bullet Designing and testing embedded systems on FPGA using Nios and Intel Quartus.
- Building complex electronics systems using multiple sensors, actuators and communication interfaces.

Programming Skills Python, OpenCV, Tensorflow, Keras, Numpy, C++, MATLAB, C#, LabVIEW

IT Microsoft Office, Adobe Photoshop, Adobe Illustrator

Soft Skills Organized, Creative, Hardworking, Ambitious, Maker

LANGUAGES

CEFR C2 in English, French and Arabic

CEFR A2 in German

HONORS AND AWARDS

First Place in FYP Accelerator Program 2020

Dean's Honor List

First Place in FEA Robotics Competition

 $\begin{array}{c} \text{Spring 2020} \\ \text{Spring 2016-Spring 2020} \end{array}$

Fall 2016-2017

EXTRACURR-ICULARS

01Tutor, Interactive Learning Platform

July 2020-Present

Developing an online interactive learning platform. The platform offers university students an accessible and innovative means to consolidate their knowledge in engineering and sciences

HiveMate, Vision System for Bee Swarm Prevention 2019-Present

Developing a vision system capable of identifying swarm cells withing a hive. The intricate design consisting of a rotating fish-eye camera coupled to a convolutional network estimates the presence of swarm cells attached at the bottom of the frames.

IEEE Robotics Hackaton

February 2019

September

Designed a quadruped robot capable of replicating the creep gait using Solidworks as a modelling tool and an Arduino as a microcontroller. The robot can be used for the inspection of tight spaces such as ventilations and electrical systems.

PERSONAL DETAILS

Age 23, Single

Type B Permit, No Military Obligation