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1950-Tensegrities 2006 – Tensegrity 

in wing design 

(Conceptual)

2008 Tensegrity 

applications in 

engineering

2009-2014 –

Exploring the 

feasibility of flexible 

wings

2020-2021 –

Tensegrity-based 

morphing wing 

implementations

“Modeling and design exploration of tensegrity-based twisting wing,” 2021 (Pham et al) Journal of Mechanisms and Robotics, 13(3):031019, 2021. 

• Twisting Capabilities

• Inspired from the twisting column 

• Actuation not addressed

• Worked on simulation only

“The structural suitability of tensegrity aircraft wings,” 2020 (Mills et al)In AIAA Scitech 2020 Forum, page 0480, 2020

• Two design methodologies: Experimental and Optimization-based

• Structural Analysis

• No Morphing

• Worked on simulation only

“Rolling soft membrane-driven tensegrity robots,” 2020 (Baines et al) IEEE and Automation Letters, 5(4), 6567-6574

• Design methodology for tensegrity membrane

• Membrane is used for actuation 

• Not related to wing morphing



• Feasibility of tensegrity-
based morphing wing

• Suitable design 
methodology for 
membrane tensegrity 
wing

• Design, Model and 
Manufacture a Morphing 
Wing
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References available at the end of the presentation



Proposed Solution : 
Overview
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• Designed inspired from the kite-frame 
tensegrity module

• Struts out of carbon fiber rods + plastic

• Membrane out of silicone

• Stratified Design Methodology: 

 1 – Mechanism Design

 2 – Airfoil Design

 3 – Membrane Design

M. Seixas. 

Tensegrity 

bamboo 

structures. URL: 

https://www.resear

chgate.net/project/ 

Tensegrity-

bamboo-

structures.



Mechanism Design 
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Isometric View

Isometric View

Tail

Nose



Airfoil Design
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Experiments and Results 
–Wing Characterization
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Experiments and Results 
–Material Exploration S
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 Minimum Strain 200%

 Young’s Modulus Maximum 
1e10^7Pa

 Minimum Fracture 
Toughness 1e10^4 Pa.m^0.5

 Lightweight



Experiments and Results 
–Material Exploration
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Membrane Design 
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• Needs to:

 Sustain large deformations

 Remain always in tension

 Be flexible

 Be tough to resist high stress 
concentrations (Corners, 
Holes)

• Silicone portions wrapping 
the structure (laser-cut out of 
a silicone sheet 1.5mm 
thickness)

• Caps firmly attach the 
membrane to the structure



 Mechanism

• Eccentricity

• Number of parts 

• Simulation and Manufacturing

Challenges and 
Solutions
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Solutions: 

 Combine Components

 Use Compliant Mechanisms

 Membrane Design and 
Attachment

• Manually design the 2D sheet

• Incorporating the pre-stress

Solutions: 

 Rely more on parametric 
software (Grasshopper)

 Automatically generates the 2D 
sheet taking the prestress into 
consideration  



Challenges and 
Solutions
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 Integration
• Membrane/Structure 

interaction 

• Transient stresses generated 
during attachment

• Void developments

Solutions: 

 Carefully layout the membrane design as to 
minimize bending in the elements during 
attachment

 Rely on software for accurate pre-stress 
estimation



Conclusion-Future 
Works
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• Feasibility of tensegrity-
based morphing wings in 
practice

• Design methodology for 
tensegrity-based 
morphing wings 
(Membrane + 
Mechanism + Actuation)

• Morphing wing prototype

Future works

 Topology optimization using generative algorithms 
which meets all the design requirements. 

 Combining tensegrities with compliant mechanisms

 Hybrid designs

Foam Wrapping 

Silicone Wrapping

Foam-based Rigid 

Components

Technology for OEM Design Engineers. (n.d.). Designfax from

http://www.designfax.net/cms/dfx/opens/article-view-

dfx.php?nid=4&bid=745&aid=6748&et=featurearticle&pn=02 
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